Sr.	Course Type	Course Title	N	Max. Marks				
No.	Course Type	Course Title	Int.	Ext.	Total			
1	MDS/3/CC7/T	RESEARCH METHODLOGY	30	70	100	4		
2	MDS/3/DSC2(i)/T	EVOLUTIONARY ALGORITHM	30	70	100	4		
	MDS/3/DSC2(ii)/T	MACHINE LEARNING		- 50	50	2		
3	MDS/3/DSC2(i)/P	LAB EVOLUTIONARY ALGORITHMS		50	30			
	MDS/3/DSC2(ii)/P	LAB MACHINE LEARNING			100	4		
4	MDS/3/DSC3(i)/T	PROGRAMMING WITH MATLAB	30	70	100			
	MDS/3/DSC3(ii)/T	PROGRAMMING WITH R			50	2		
5	MDS/3/DSC3(i)/P	LAB MATLAB		50	30	4		
	MDS/3/DSC3(ii)/P	LAB R PROGRAMMING			75	3		
6	MDS/3/AEC3/T	HEALTH AND FITNESS	25	50	75			
7	MDS/3/SEC3/T	DIGITAL MARKETING	15	35	50	2		
3	MDS/3/SEC3/P	LAB DIGITAL MARKETING		25	25	1		
	MDS/3/OEC2/T	MARKETING	30	70	100	4		
)	MDC/2/OEC2/I		160	490	650	26		

M.Sc. Semester 4

Sr.	Course Type	Course Title		N	Credits		
No.		1 1 1 1 1 1 1 1 1		Int.	Ext.	Total	
1	MDS/4/CC8/T	IOT & CLOU		30	70	100	4
2	MDS/4/DSC4(i)/T	SOFT COMP	UTING	30	70	100	4
	MDS/4/DSC4(ii)/T	DEEP LEAR	the same of the sa				
3 MDS/4/CC9/P	RESEARCH PROJECT	Proposal Seminar	75		75	3	
			Internal Assessment	75	-	75	3
			Project Documentation	-	100	100	4
			Project Viva	-	100	100	4
Sub To	otal Semester IV	T DUTK		210	340	550	22

w With

1

	MDS/3/CC7/T Research Methodology												
Course	Course	Contact	Delivery	Delivery Maximum Marks					Assessment				
Type	Credit	Hours/ Week	Mode	External	Int	erna	al	Duration	Methods				
Compulsory	04	04	Lecture 70			30		3 Hours	TEE/MTE/				
Theory					20	5	5		Assignment /				
									Attendance				

Course Objectives: The objective of this course is to get the students familiar with different aspects of research methodology, namely, research design, collection and analysis of data, and interpretation of results.

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: objectives, hypothesis, interpretation, data analysis, data
	collection, research design and method, interpretation, data analysis,
	sampling.
CO2	describe: objectives, hypothesis, interpretation, data analysis, data
	collection, research design and method, interpretation, data analysis,
	sampling.
CO3	Illustrate: measurement, data collection, processing, sampling, analysis
	and its strategies, reports.
CO4	categorize: research, sampling methods, data collection techniques, reports
	,and data processing strategies.
	perform: data analysis.
CO5	compare: sampling methods, data collection techniques, reports and data
	processing strategies.
CO6	create: thesis, reports.
	design: research tool .
	interpret(drive): results.

							urse M	1		1		
Cos	PE	PEO1		PEO2		-	PEO3		PEO4		PEO5	
CO1		1		1			3		3		3	
CO2		2		2			3		3		3	
CO3		3		3			3		3		3	
CO4		3		3			3		3		3	
CO5		3		3			3		3		3	3
CO6		3		3			3		3		3	3
Average	2	.5		2.5			3		3		3	3
	CO-P	O M	apping	g Mat	rix fo	r Cou	rse M	DS/3/0	CC7/T			
Cos												6)
	PO1	PO2	P03	P04	PO5	90d	PO7	PO8	P09	PO10	PO11	PO12
		1			1			H		Ь	Ъ	P
CO1	1	3	1	1	1	-	-	3	_	3	1	
CO2	2	1	1	3	1	-	-	3	-	3	2	
CO3	3	1	1	3	3	-	_	3	-	3	3	
CO4	3	3	1	3	1	-	_	3	-	3	3	
CO5	3	1	1	3	3	-	-	3	-	3	3	
CO6	3	3	3	3	3	-	-	3	-	3	3	
Average	2.5	2	1.3	2.6	2	-	_	3	-	3	2.5	
	CO-PS	SO M	lappin	g Ma	trix fo	r Co	urse M	IDS/3/	CC7/T	•		
Cos	PS	01	P	SO2		PSO3			PSO	4	PS	O5
CO1	3	3		3			1		3		3	3
CO2	3	3		3			2		3		3	3
CO3	3	}		3			3		3		3	3
CO4	3	}		3		3			3		3	3
CO5	3	}		3			3		3		3	3
CO6	3	}		3			3		3		3	
Average	3	3		3		2.5			3		3	3

	Course Content MDS/3/CC7/T: Research Methodology
Unit – I	Objectives and types of research: motivation and objectives- research methods vs. methodology, types of research- descriptive vs. analytical, applied vs. fundamental, quantitative vs. qualitative, conceptual vs empirical research formulation: defining and formulating the research problem selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-primary and secondary source reviews, hypothesis- definition, qualities of a good hypothesis, null hypothesis and alternatives.
Unit – II	Research design and methods: basic principles, need of research design-features of good design, important concepts relating to research design, criteria of selecting a sampling procedure, characteristics of a good sample design, sampling methods, measurement: concept of measurement, problems in measurement in research - validity and reliability. levels of measurement- nominal, ordinal, interval, ratio.
Unit – III	Data collection and analysis: execution of the research, observation and collection of data,methods of data collection, data processing and analysis strategies, data analysis with statistical packages, hypothesis testing, generalization and interpretation, univariate analysis (frequency tables, bar charts, pie charts, percentages).
Unit – IV	Meaning of interpretation, need of interpretation, technique of interpretation, precaution in interpretation, layout of a research paper, journals in computer science, impact factor of journals, ethical issues related to publishing, plagiarism and self-plagiarism. reports and thesis writing: structure and components of scientific reports, types of report-technical reports and thesis, writing-synopsis, abstract, illustrations and tables, results, summary, reference citing and listing.
	Text/Reference Books
Text Books	 J. Garg, B.L, Karadia, R, Aggarwal F, An Introduction to Research Methodology, RBSA Publishers, 2002. Kothari, Chakravanti Rajagopalachari. Research methodology: Methods and techniques. New Age International, 2004. Santosh Gupta, Research Methodology and Statistical Techniques, Deep & Deep Publications Pvt. Ltd., 2008
Reference Books	1. N. Gurumani, Scientific Thesis Writing and Paper Presentation, MJP Publishers. Montgomery, Douglas C, Design and Analysis of Experiments, Wiley India Pvt. Ltd.

	MDS/3/DSC2(i)/T:Evolutionary Algorithms									
Course Type	Course	Contact	1 - 1		ım Marks	Exam	Assessment			
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods			
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/			
					20 5 5		Attendance			

Course Objectives: To study fundamental concepts of evolutionary algorithm, genetic algorithm, their applications, genetic operators, the theoretical Analysis of Evolutionary Algorithms , Niche and Speciation

and Speciation												
Course Outcomes	At the end of	this course, the	student will be	able to:								
CO1	define: conce	pts of evolution	nary algorithm	s, population,	gene, alleles, pl	nenotype,						
	fitness function	on, crossover, se	lection and mu	ıtation.								
CO2	describe/expla	ain: crossover,	selection mu	tation, Diploid	l, dominance, a	beyance,						
	Niche and Spe	Niche and Speciation.										
	understand: ap	nderstand: application of genetic algorithms for job shop scheduling problen										
CO3	use: encoding	se: encoding scheme, crossover, selection, mutation operators and fitness scaling										
CO4	differentiate:	ifferentiate: evolutionary algorithms and traditional algorithms, types of crossov										
	mutation, sel	nutation, selection, inversion and reordering operator, crowding and re										
	mating.	mating.										
CO5	select and def	end: crossover,	mutation and s	selection operat	ors of genetic al	gorithms.						
CO	O-PEO Mappin	ng Matrix for C	Course MDS/3	/DSC2(i)/T								
COs	PEO1	PEO2	PEO3	PEO4	PEO5							
CO1	1	3	1	3	3							
CO2	2 3 1 3 3											
CO3	3	3 1 3 3										
CO4	3	3	1	3	3							

CO₅

Average

2.4

	5								()			
COs	P01	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO1 0	PO1 1	PO1

1	3	1	1 1	4	1 1	•		1 1		1 1	
•	3	1	1	1	-	3	-	-	-	-	-
2	1	1	3	1	_	3	-	-	-	-	-
3	1	1	3	3	_	3	-	_	-	-	-
2	1	1	3	1	_	3	-	-	-	-	-
2	1	3	1	3	_	3	-	-	-	-	-
2	1.4	1.4	2.2	1.8	<u> </u>	3	-	-	-	-	-
CO-PSO Mapping Matrix for Course MDS/3/DSC2(i)/T											
PSO1		PSO2		PSO3			PSO4		PSO5		
	3	1		3			1		-		
	3	1		3			2		-		
	3	1		3			3		-		
3		1			3			3		-	
3		1			3			3		-	
3		1		3			2.6		-		
	3 2 2 2 2 2 2 PSC PSC	3 1 2 1 2 1 2 1.4 2-PSO Mapp PSO1 3 3 3 3 3	3 1 1 2 1 3 2 1.4 1.4 D-PSO Mapping M PSO1 F 3 3 3 3 3 3 3	3 1 1 3 2 1 1 3 2 1 3 1 2 1.4 1.4 2.2 2 1.4 1.4 2.2 2 2 1.4 1.4 2.2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	3 1 1 3 3 2 1 1 3 1 2 1 3 1 3 2 1.4 1.4 2.2 1.8 PSO Mapping Matrix for One PSO2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	3 1 1 3 3 - 2 1 1 3 1 - 2 1 3 1 3 - 2 1.4 1.4 2.2 1.8 - PSO Mapping Matrix for Course PSO2 PS 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	3 1 1 3 3 - 3 2 1 1 3 1 - 3 2 1 3 1 3 - 3 2 1.4 1.4 2.2 1.8 - 3 2 1.4 1.4 2.2 1.8 - 3 PSO PSO PSO3 PSO3 3<	3 1 1 3 3 - 3 - 2 1 1 3 1 - 3 - 2 1 3 1 3 - 3 - 2 1.4 1.4 2.2 1.8 - 3 - 2 1.4 1.4 2.2 1.8 - 3 - 2 1.4 1.4 2.2 1.8 - 3 - 2 PSO Mapping Matrix for Course MDS/3/DSO PSO3 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3	3 1 1 3 3 - 3 - - 2 1 1 3 1 - 3 - - 2 1 3 1 3 - 3 - - 2 1.4 1.4 2.2 1.8 - 3 - - 2 1.4 1.4 2.2 1.8 - 3 - - 2 1.4 1.4 2.2 1.8 - 3 - - 2 PSO Mapping Matrix for Course MDS/3/DSC2(i)/7 PSO4 3 1 3 1 3 1 3 3 2 3 1 3 2 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3	3 1 1 3 3 - 3 -	3 1 1 3 3 -

	Course Content MDS/3/DSC2(i)/T: Evolutionary Algorithms
Unit - I	Introduction: Introduction to evolutionary algorithm, history of evolutionary algorithm, advantage of evolutionary algorithm, application of evolutionary algorithm - biological and AI, introduction of genetic algorithm, difference between traditional approach and evolutionary algorithm.
Unit - II	Genetic modelling: Basic terminologies and operators like individual, gene, alleles, phenotype and fitness function. simple genetic algorithm, its representation, advantage and limitation of genetic algorithm.
Unit - III	Operators of GA Selection: Roulette wheel selection, random, rank, tournament, Boltzmann selection. Crossover and its types: Single point crossover, two point crossover, multipoint crossover, ordered crossover, uniform crossover, crossover for real-valued representation. Mutation and its types: Flipping, Interchanging, reversing, replacement, mutation for real-valued representation, crossover rate, mutation rate and convergence criteria
Unit - IV	Theoretical Analysis of Evolutionary Algorithms: Diploid, dominance and abeyance, inversion and reordering operator, fitness scaling. Niche and Speciation: Fitness sharing, crowding and restricted mating. Application of GA: Genetic Algorithm for travelling salesman problems (TSP).
	Text/Reference Books
Text Books	 Deepa, S.N. and Sivanandam, S.N. Principles of soft computing, 2011. Michael D. Vose. The Simple Genetic Algorithm - Foundations and Theory. Prentice Hall India Learning Private Limited, 2004.
Reference Books	 David E. Goldberg, Genetic Algorithms in Search, Optimization and machine learning. Pearson Education India, 2008. D. Nagesh Kumar, Multicriterion Analysis in Engineering and Management, PHI Learning, 2010. Chambers, Lance D., ed. Practical Handbook of Genetic Algorithms: Complex Coding Systems, Volume III. Vol. 3. CRC press, 2019.

	MDS/3/DSC2(ii)/T: Machine Learning													
Course Type														
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods							
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/							
					20 5 5		Attendance							

Course Outcomes	At the end of this course, the student will be able to:
CO1	define: the terms of machine learning: types of machine learning, data
	preprocessing, classification, regression, and neurons.
CO2	explain: learning types, data preprocessing and architecture of ANN.
CO3	apply: training and testing data using data pre processing and model selection techniques and classification, regression, clustering techniques according to their problem.
CO4	classify: data preprocessing, model selection, regression, classification, and unsupervised learning techniques.
CO5	compare: Data Preprocessing techniques, Supervised and unsupervised learning.

CO)-PEC) Mappi	ing l	Matri	x for C	Course	e MDS	S/3/DS	C 2 (ii)	/T		
COs	P	EO1		PEC)2	P	EO3		PEO ₂	1	PE	O5
CO1		1	ĺ	3			1		3		3	
CO2		2	ĺ	3			1		3		(3
CO3		3	Ì	3			1		3		3	3
CO4		3	Ì	3			1		3		3	3
CO5		3		3			1		3		(3
Average		2.4	Ì	3			1		3		3	3
C	O-PO	Mappi	ng N	Iatrix	for C	ourse	MDS	/3/DSC	C2(ii)/	T		
COs	PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	_	3	-	-	-	-	-

	<u> </u>	1	1	<u> </u>	ı	1	l	1	1	1	1	1 1		
CO2	2	1	1	3	1	-	3	-	-	-	-	-		
CO3	3	1	1	3	3	_	3	-	-	_	-	-		
CO4	2	1	1	3	1	_	3	-	-	_	-	-		
CO5	2	1	3	1	3	_	3	-	-			-		
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-				
	CO-PSC) Марр	ing I	Matrix	for (Course	MDS	S/3/DS	C 2(ii)	T		,		
COs	P	SO1		PSO2	2	PS	SO3		PSO4	Į.	PSO	O5		
CO1	3 1 3 1 -													
CO2	3 1 3 2 -													
CO3		3 1 3 -												
CO4		3 1 3 -												
CO5		3 1 3 -												
Average		3 1 3 2.6 -												
Course Content														
	Г	MDS/	3/DS	C2(ii)	/T :M	achin	e Leai	rning						
Unit – I	Basics of machine of machine	learnin	g, typ	es of	machi	ine lea	rning	and its			_			
Unit – II	Preparin in mach (dimensi	nine le	arnin	g, ex	plorin	g stri	ucture	of d						
Unit – III	Supervis				oducti	ion, cla	assific	ation (i	ntrod	action,	classif	ication		
	Classific	cation a	lgori	thm :]	_	_				yes, K	-Neares	st		
	Neighbo Regressi									oistic :	regress	ion		
	IXCSI COO			510331		uiti v al.			JII, 10	515110				
Unit – IV	Unsuper (k-neares			_								, KNN		
	Neural I	Networ!	k: Int	roduc	tion, a	rchited	cture c	of artific	cial ne	eural n	etwork			
			Te	xt/Re	ferenc	ce Boo	ks							
Text Books	2. Khai	hell, To n, Shah aptive C l.	ızad.	"Ethe	em A	lpaydii	n. Int	roducti	on to	Macl	hine L	earning		

Reference	
Books	

- 1. Mildenberger, Thoralf. "Stephen marsland: Machine learning. an algorithmic perspective." Statistical Papers 55, no. 2 2014.
- 2. Flach, Peter. Machine learning: the art and science of algorithms that make sense of data. Cambridge university press, 2012.
- 3. Harrington, Peter. Machine learning in action. Simon and Schuster, 2012.
- 4. Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

	MDS/3/DSC3(i)/T: Programming with MATLAB													
Course Type	Course	Contact	Maximu	m Marks	Exam	Assessment								
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods							
Compulsory Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/							
Theory					20 5 5		Attendance							

Course Objectives: The objective of this course is to study, learn, and understand the major concepts of MATLAB Programming, namely, data types, data structure, matrices, data import/export, graphics, control structure, toolboxes, image and video processing.

Course	At the end of	At the end of this course, the student will be able to:									
Outcomes											
CO1	tools, functi	define: features, commands, data types, hierarchy of operations, matrix, tools, functions related to input/output, file handling and graphics, control structure and toolboxes used in MATLAB.									
CO2	matrix, tool	describe: history, features, commands, data types, hierarchy of operations, matrix, tools, functions related to file, function related to graphics, control structure and various toolboxes of MATLAB.									
CO3	file handlin	use: commands, operations, tools, menus, toolbars, input/output functions, file handling, functions related to graphics, 2D and 3D plotting, control structure, debugging, simulink and image processing toolboxes in MATLAB									
CO4		analyze: commands, data types, operations, control structure, matrix, tools, different functions related to graphics and file handling in given MATLAB program.									
CO5		command, data type function, feature									
CO6		c or advanced prog plotting, functions, MATLAB.									
	CO-PEO Ma	pping Matrix for	Course MDS/3/	/DSC3(i)/T							
COs	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						

CO3	3 3						3				3		
CO4		3		3		3			3		3		
CO5		3		3		3			3		3		
CO6		3		3			3		3		3		
Average	2	.5		2.5			3		3		3		
	CO-P	O Maj	pping	Matrix	k for C	Course	MDS	5/3/DS	SC3(i)/7	Γ			
Cos	PO1	PO2	PO3 PO4 PO5			PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	3	1	1	1	-	-	-	-	-	1	3	
CO2	2	1	1	3	1	-	-	-	-	-	2	3	
CO3	3	1	1	3	3	-	-	_	-	-	3	3	
CO4	3	3	1	3	1	-	-	-	-	-	3	3	
CO5	3	1	1	3	3	-	-	-	-	-	3	3	
CO6	3	3	3	3	3	-	-	-	-	-	3	3	
Average	2.5	2	1.33	1.33 2.67 2			_	_	-	-	2.5	3	
	CO-PSO Mapping Matrix for Course MDS/3/DSC3(i)/T												
Cos	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1		3		3			1		-		3		
CO2		3		3			2		-		3		
CO3		3		3			3		_		3		
CO4		3		3			3		_		3		
CO5		3		3			3				3		
CO6		3		3			3		-		3		
Average		3	ľ	3		,	2.5		-		3		
	MI	DS/3/D	SC3(i	Cour)/T: Pr	se Co ogran		with	MAT	LAB				
Unit I					•				and the				
	• -						-	-				es and	
	-					• •					-	essions,	
	-			_					n, assig				
									-			es, line arrays,	
					-				related			arrays,	
Unit - II													
Unit - II	Polynomials: entering, evaluation, roots, operations. Input/output statements: data input interactive inputs reading/storing data												
	Input/output statements: data input, interactive inputs, reading/storing data files output commands low level input output functions												
	files, output commands, low level input output functions. Introduction to data import and export, supported file format, working with												
				_		_	_	_				from a	
				-					-				

	file, exporting audio/video data, example, working with graphics file, importing graphics data, exporting graphics data, creating a simple GUI programmatically, dissertations of different components in guide, creating menus.
Unit - III	MATLAB graphics: 2d/3d plotting visualization, 2d plot, multiple plot, style options, legends, subplots, specialized 2d plot- logarithmic, polar, area, bar, barh, hist, rose, pie, stairs, stem, compass. 3d plot - plot3, bar3, bar3h, pie3, stem 3, meshgrid, mesh, surf, contour, contour3.
Unit - IV	Control Structures: for, nested for, while, branch control structure- if, switch, break, continue, error, try-catch, debugging. Introduction to MATLAB toolboxes: Simulink, image processing toolbox, application level image processing techniques.
	Text/Reference Books
Text Books.	 Bansal RK, Goel AK, Sharma MK. MATLAB and its applications in engineering. Pearson Education India; 2009. Patel RN, Mittal A. Programming in MATLAB®: A Problem-solving Approach. Pearson India; 2014. Hanselman DC, Littlefield BL. Mastering matlab. Prentice Hall Press; 2011 Oct 8. Gilat A. MATLAB: An introduction with Applications. John Wiley & Sons; 2004.
Reference Books	 Sizemore J, Mueller JP. MATLAB for Dummies. John Wiley & Sons; 2014 Nov 10. Stephen J. Chapman, MATLAB programming for engineers.

	MDS/3/DSC3(ii)/T: Programming with R													
Course	Course	Contact	Delivery	Maximu	m Marks	Exam	Assessment							
Type	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods							
Optional Theory	04	04	Lecture	re 70 30		3 Hours	TEE/MTE/ Assignment/							
Injury					20 5 5		Attendance							

Course Objectives: To study the fundamental concepts in R programming language, data types, operators, decision making statements and iteration, functions, different data structures like list, vectors, matrices, data frames, charts and graphs, graphics functions and statistical analysis.

Course	At the end of	f this course, the s	tudent will be	e able to:									
Outcomes													
CO1	list: data typ	es, functions in R	programming	g, visualization.									
CO2	describe: the	describe: the syntax of decision making statements, loops, user defined											
		Functions, used define packages;											
		explain: the process of import and export of data in text file, excel file and											
	MYSQL.												
CO3		use: various in built ,user defined function and packages .											
		apply: R programming constructs to solve real world problems.											
CO4		categorize:data types,conditional& control statements, in built and user											
		lefined functions and packages.											
CO5	-	compare: data types, conditional & control statements, functions, packages											
		n R programming.											
CO6	design:basic and advanced applications in R programming.												
CO	CO-PEO Mapping Matrix for Course MDS/3/DSC3(ii)/T												
COs	PEO1	PEO2	PEO3	PEO4	PEO5								
CO1	1	1	3	3	3								
CO2	2	2	3	3	3								
CO3	3	3	3	3	3								
CO4	3	3	3	3	3								
CO5	3	3	3	3	3								
CO6	3	3	3	3	3								
Average	2.5 2.5 3 3 3												
C	O-PO Mappi	ing Matrix for Co	ourse MDS/3	/DSC3(ii)/T									
COs	PO PO2	PO PO4 PO5	PO6 PO7 I	PO8 PO9 PO	1 PO1 PO12								

CO1	1	3	1	1	1	-	_	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	_	_	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.3	2.6	2	-	-	-	_	_	2.5	3
CO-PSO Mapping Matrix for Course MDS/3/DSC3(ii)/T												
COs	PS	SO1	PSO2 PSO3				PSO4		PSC)5		
CO1		3		3		1			-		3	
CO2		3		3		2			-		3	
CO3		3		3			3		-		3	
CO4		3		3			3		-		3	
CO5		3		3			3		-		3	
CO6		3		3		•	3		_		3	
Average		3		3		2	2.5		-		3	

	Course Content MDS/3/DSC3(ii)/T: Programming with R
Unit - I	Basic of R: Introduction to R, Features of R, Variables in R, In-Built Functions in R (mathematical, trigonometric, logarithmic, Date and Time, Sequence, I/O). Data Types in R: Vectors, Matrices, Arrays, Lists, Factors, Data Frames.
Unit - II	Programming in R: Decision making structures (if, Switch), Loops (For, while, repeat), User Defined functions (with argument without argument), User Defined Package. Reports using remark down (direct rendering, in-direct rendering).
Unit - III	Data Exploration and Manipulation: Missing Data Management, Data reshaping through melting and casting, special functions across data elements. Import and Export of data: Import and Export of data in text files, excel files and MySQL.
Unit - IV	Basic Visualization: Pie chart, bar chart, Histogram, Line chart, Dot Chart, Bubble plot, Image Plot, Violin Plot. Advanced Visualization: Scatter plot, corrgram, star and segment plots, tree maps, heat map.
	Text/Reference Books
Text Books	 Christian Heumann, Michael Schomaker and Shalabh, Introduction to Statistics and Data Analysis - with Exercises, Solutions and Applications in R, Springer, 2016. Pierre Lafaye de Michaeux, RémyDrouilhet, Benoit Liquet, The R Software-Fundamentals of Programming and Statistical Analysis, Springer 2013.
Reference Books	1. Alain F. Zuur, Elena N. Ieno, Erik H.W.G. Meesters, Use R - A Beginner's Guide to R, Springer 2009.

	MDS/3/DSC3(i)/P: MATLAB Programming											
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Lab Work	50	-	3 Hours	TEE/ Practical File					

Instructions to paper setter for Final Term Examination: The Final Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands on practice with programming constructs of MATLAB and their usage. This course is based on MDS/3/DSC3(i)/T: Programming with MATLAB.

Сописо	At the end o	f this course the st	udant will be ab	la ta:							
Course Outcomes	At the end of this course, the student will be able to:										
CO1	functions rela	define: features, commands, data types, hierarchy of operations, matrix, tools, functions related to input/output, file handling and graphics, control structure and toolboxes used in MATLAB.									
CO2	matrix, tools	ory, origin, features, , functions related various toolboxes of	to file, function								
CO3	handling, fu	nds, operations, tool nctions related to grimulink and image &	caphics, 2D and	3D plotting, co	ontrol structure,						
CO4	_	nmands, data types actions related to gr	-								
CO5		command, data typ function, feature o									
CO6	2D and 3D 1	or advanced programments, functions, image & video programments.	tools, features,	simulink, fuzz	y logic, neural						
	CO-PEO M	apping Matrix for (Course MDS/3/D	SC3(i)/P							
Cos	PEO1	PEO2	PEO3	PEO4	PEO5						
CO1	1	1	3	3	3						
CO2	2	2	3	3	3						
CO3	3	3	3	3	3						
CO4	3	3	3	3	3						
CO5	3 3 3 3										
CO6	3 3 3 3										
Average	2.5	2.5	3	3	3						

CO-PO Mapping Matrix for Course MDS/3/DSC3(i)/P

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	-	-	-	-	1	3
CO2	2	1	1	3	1	-	-	-	-	-	2	3
CO3	3	1	1	3	3	-	-	-	-	-	3	3
CO4	3	3	1	3	1	-	-	-	-	-	3	3
CO5	3	1	1	3	3	-	-	-	_	-	3	3
CO6	3	3	3	3	3	-	-	-	-	-	3	3
Average	2.5	2	1.33	2.67	2	-	-	1	-	-	2.5	3
	CO-	PSO M	apping	g Matri	x for C	ourse	MDS/	3/DSC	3(i)/P			
Cos	P	SO1		PSO2	2	P	SO3		PSO4		PSC)5
CO1		3		3			1		-		3	
CO2		3		3			2		-		3	
CO3		3		3			3		-		3	
CO4		3		3			3		-		3	
CO5		3		3			3		-		3	
CO6		3		3			3		-		3	
Average		3		3		2	2.5		-		3	

	MDS/3/DSC3(ii)/P: R Programming Lab											
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment					
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods					
Practical	02	04	Practical/ Lab Work	50	-	-	TEE/ Practical File					

Instructions to paper setter for Final-Term Examination: The Final-Term examination will be conducted by a panel of internal and external examiners. Examinees will be evaluated on the bases of practical file, performance in practical and a viva voce exam.

Course Objectives: The objective of this course is to get the students hands on practice with scripting/programming concepts of R programming language as covered in course MDS/3/DSC3(ii)/T.

		P	r &	,		56					- 2 - (-	· - ·
Course Outcom	es A	t the en	d of th	is cou	rse, th	e stud	ent wil	l be at	ole to:			
CO1		list : data types, functions in R programming, visualization.										
CO2		describe: the syntax of decision making statements, loops, user defined functions, used define packages;										
		explain: the process of import and export of data in text file, excel file										
	a	and MYSQL.										
CO3		se: vario						•	_			
004		pply: R p									1, 1	
CO4		ategoriz						ol state	ements	s, in bui	it and	
007		ser defii						1 , ,		С .:		
CO5		ompare:					contr	ol state	ements	s,functio	ons,	
CO6		ackages					tiona	n D m	*******			
<u> </u>		esign:ba										
	CO-	PEO Ma	apping			Course		1	` ´		1	
COs		PEO1		PEC	02		PEO3	3	PI	EO4	PI	EO5
CO1		1		3			3			3		3
CO2		2		3			3			3		3
CO3		3		3			3			3		3
CO4		3		3			3			3		3
CO5		3		3			3			3		3
CO6		3		3			3			3		3
Average		2.5		3			3			3		3
	CO	-PO Ma	pping	Matri	x for C	ourse	MDS/	3/DSC	3(ii)/I			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	_	-	-
CO2	2	1	1	3	1	-	3	2	-	-	-	-
CO3	3	1	1	3	3	-	3	3	-	-	-	-
CO4	3	3 1 3 1 - 3 3										
CO5	3	1	1	3	3	-	3	3	-	-		-
CO6	3	3	3	3	3	-	3	3	-	-	-	-
Average	2.5	2	1.3	2.6	2	-	3	2.5	-	-	-	-

	CO-PSO Mapping Matrix for Course MDS/3/DSC3(ii)/P											
COs	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	1	1	1	-							
CO2	3	2	2	2	-							
CO3	3	3	3	3	-							
CO4	3	3	3	3	-							
CO5	3	3	3	3	_							
CO6	3	3	3	3	-							
Average	3	2.5	2.5	2.5	-							

MDS/3/AEC3/T Health and Fitness											
Course Type	Course	Contact	Delivery	Maximu	n Marks	Exam	Assessment				
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods				
Ability Enhancement Course	03	03	Lecture	50	25	3 Hours	TEE/MTE/ Assignment/ Attendance				

Course Objectives: The objective of this course is to understand the importance of fitness, Yoga, lifestyle and other factors on our health. It also describes important concept of stress management.

Course	At the end of this course, the student will be able to:
Outcomes	
CO1	define: good diet, importance of fitness, yoga and lifestyle.
CO2	explain: the basic yoga asanas, balanced diet and the ways of handling the stress
CO3	use:ways of handling physical and mental stress in their lives.
CO4	classify:different asanas according to health and ways of managing the stress
CO5	compare and select:asanas and diet according to body and mind.

CO-PO Mapping Matrix for Course MDS/3/AEC3/T

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	1	1	1	-	3	1	-	2	-	-
CO2	2	1	1	3	1	-	3	2	-	2	-	-
СОЗ	3	1	1	3	3	-	3	3	-	2	-	-
CO4	2	1	1	3	1	-	3	3	-	2	-	-

CO5	2	1	3	1	3	-	3	3	-	2	-	-	
Avg	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-	
	Course Content MDS/3/AEC3/T Health and Fitness												
	Unit – I Introduction to Fitness and Training: Benefits of exercise, components of physical fitness, types of physical fitness, Health related physical fitness and performance related physical fitness, cosmetic fitness, effect of specific nutrients on work performance, diets for physical fitness & training.												
	Unit –	II	healtl aerob symp	n and fit ic exerc	eness inc cise on stop any	cluding of heart ra	diet and ite, bloc	exercise od press	e (Aerol ure and	bic and a lung fur	naerobic), nction, re	gement of effect of cognizing scriptions	
	Unit -	III	Bhuja Triko Postu	angasana masana,	ı, Shala Padahas	bhasana thasana)	, Dhanu	rasana,	Shavasa	ana, Vajr	asana, Ch	Halasana, akrasana, relaxation	
	Unit –	IV	obesi asses	ty, oste	oporosis oody ma	, CHE), Bacl x/skin f	k pain, Fold mea	health 1	related pl	hysical fit	ertension, tness and ite, blood	
			•		Tex	t/Refere	nce Boo	oks					
Text 1	Text Books 1.Bates, Mike. Health fitness management: a comprehensive resource for managing and operating programs and facilities. Human kinetics, 2008. 2.Melvin H. Williams, Eric S. Rawson, J. David Branch, Nutrition for health, fitness and sport, McGraw Hill, 2016.												
Refer	Reference Books 1. Corbin. Charles Beetal. C.A., (2004) Concepts of Fitness and Welfare Boston McGraw Hill. 2. ACSM"s "Health Related Physical Fitness Assessment Manual Lippincott Williams and Walkins USA, 2005.												

	MDS/3/SEC3/T Digital Marketing											
Course Type	Course	Contact	Delivery	Maximui	n Marks	Exam	Assessment					
	Credit Hours/Week Mode External Internal Duration Method											
Skill Enhancement Course	02	02	Lecture	35	15	3 Hours	TEE/MTE/ Assignment/ Attendance					

Course Objectives: The objective of this course is to learn the concepts of digital marketing, social media marketing and other online marketing strategies.

Course	At the end of this course, the student will be able to:
Outcomes	
CO1	define : the basic concepts of digital marketing, social media marketing and
	other online marketing strategies.
CO2	explain: the effective usage of digital marketing, social media marketing and
	other online marketing strategies.
CO3	use: different strategies in digital marketing.
CO4	classify: strategies and tools used in digital marketing.
CO5	compare and select types of: tools, strategies, digital editing tools.

CO-PO Mapping for Course MDS/3/SEC3/T PO PO PO PO PO PO PO PO PO PO1 PO1 PO1 CO CO CO

CO 3	3	1	1	3	3	-	3	3	-	2	-	-
CO 4	2	1	1	3	1	-	3	3	-	2	-	-
CO 5	2	1	3	1	3	-	3	3	-	2	-	-
Avg	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-
				MDS		ourse (: Iarketii	าฮ	I	l.	
	 Unit – I Introduction Digital Marketing: Changing face of advertisement, technology behind digital marketing, need of digital marketing, defining your digital marketing strategy, understanding digital consumer. Unit – II Website for Digital Marketing: Need of website, steps of building website, choosing domain name, hosting website, arranging information and writing effective web content, advertising on search engine. Unit - III Social Media and Email Marketing: Introduction to social media, different forms of social media, rules of engagement, Introduction to email marketing, planning your campaign, measuring success. 									building ormation 1 media,		
	Unit – IV Other Marketing Strategies: Introduction to mobile marketing, mobile application, performance marketing, understanding content marketing, content strategy and content promotion.											
	Text/Reference Books											
Text	Text Books 1. Ryan, Damian. Understanding digital marketing: marketing strategies for engaging the digital generation. Kogan Page Publishers, 2016.								strategies			
Reference Books 1. Pulizzi J. Epic content marketing. McGraw-Hill Publishing; 2013. 2. Oliver J. Rich ,Digital Marketing for Beginners 2020												

	MDS/3/SEC3/P Digital Marketing								
Course Type	Course	Contact	Delivery	Maximui	n Marks	Exam Duration	Assessment		
	Credit	Hours/Week	Mode	External	External Internal		Methods		
Skill Enhancement Course	01	02	Lab work	25		3 Hours	TEE/MTE/ Assignment/ Attendance		

Course Objectives: The objective of this course is to learn the concepts of digital marketing, social media marketing and other online marketing strategies.

Course Outcomes	At the end of this course, the student will be able to:
CO1	define : the basic concepts of digital marketing, social media marketing and other online marketing strategies.
CO2	explain: the effective usage of digital marketing, social media marketing and other online marketing strategies.
CO3	use: different strategies in digital marketing.
CO4	classify: strategies and tools used in digital marketing.
CO5	compare and select types of: tools, strategies, digital editing tools.

CO-PO Mapping for Course MDS/3/SEC3/P

					TI C							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
COs												
CO1	1	3	1	1	1	ı	3	1	ı	2	ı	-
CO 2	2	1	1	3	1	-	3	2	-	2	-	-

CO 3	3	1	1	3	3	-	3	3	-	2	-	-
CO 4	2	1	1	3	1	1	3	3	1	2	1	-
CO 5	2	1	3	1	3	-	3	3	-	2	-	-
Avg	2	1.4	1.4	2.2	1.8	-	3	2.4	1	2	-	-

SEMESTER 4th

	MDS/4/CC8/T: IoT& Cloud Computing								
Course Type	Course	Contact	Delivery	Maxim	um Marks	Exam	Assessment		
	Credit	Hours/Week	Mode	External	Internal	Duration	Methods		
Compulsory Theory	04	04 Lectu		70	30	3 Hours	TEE/MTE/ Assignment/		
					20 5 5		Attendance		

Course Objectives: To study the fundamental concepts of cloud computing, its enabling technologies, cloud service models and security concerns, to learn core issues of Internet of Things, IOT communication protocols and security concerns.

Course	At the end of this of	At the end of this course, the student will be able to:						
Outcomes								
CO1			ure, design, comm	unicatio	n challenges,			
		iples of web connec	•					
			, characteristics, wo	rking, se	ervice models,			
		itecture, security ch						
CO2			ork, architecture, d	esign, co	ommunication			
		ntions, principles of	•					
		-	uting: evolution, ch		_			
CO2			eture, security challe		ı rısks.			
CO3	-		ent fields of applica					
CO4			ecture, physical and	•	· ·			
		diagrammatise cloud computing: service models, service-oriented architecture.						
CO5	1		challenges, secur	ity issu	ies, enabling			
		cation areas, and pr						
	1	loud computing:	service models.	virtua	lization, and			
	hypervisors.							
	CO-PEO Ma	pping Matrix for (Course MDS/4/CC	8/T				
COs	PEO1	PEO2	PEO3	PEO4	PEO5			
CO1	1	3	1	3	3			
CO2	2 3 1 3							
CO3	3	3 3 1 3 3						
CO4	3	3	1	3	3			

framework, IoT architectural view, technology behind IoT, sources of examples of IoT, M2M communication, layered architecture (3 & 5 Layer of IoT, physical design and logical design, domain-specific IoTs, securissues of IoT. Unit - II Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, sur chain and logistics, energy conservation.	CO5		3			3			1		3		3
COs	Average		2.4		3			1			3		3
CO1		-	CO-P	O Ma	pping	Matri	x for C	ourse	MDS/	4/CC8	3/T		
CO2	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012
CO3	CO1	1	3	1	1	1	-	3	1	_	2	-	-
CO4	CO2	2	1	1	3	1	-	3	2	-	2	-	-
CO5	CO3	3	1	1	3	3	-	3	3	-	2	-	-
Average 2 1.4 1.4 2.2 1.8 - 3 2.4 - 2 - -	CO4	2	1	1	3	1	<u> </u>	3	3	-	2	-	-
CO-PSO Mapping Matrix for Course MDS/4/CC8/T COS PSO1 PSO2 PSO3 PSO4 PSO5 CO1 3 3 3 3 1 - CO2 3 3 3 3 3 2 - CO3 3 3 3 3 3 - CO4 3 3 3 3 3 3 - CO5 3 3 3 3 3 3 - CO5 3 3 3 3 3 3 - Average 3 3 3 3 2.4 - Course Content MDS/4/CC8/T: IoT& Cloud Computing Unit - I Internet of Things: what is the IOT and why is it important, IoT concept framework, IoT architectural view, technology behind IoT, sources of examples of IoT, M2M communication, layered architecture (3 & 5 Layer of IoT, physical design and logical design, domain-specific IoTs, sect issues of IoT. Unit - II Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, supplication and logistics, energy conservation.	CO5	2	1	3	1	3	_	3	3	-	2	-	-
COs PSO1 PSO2 PSO3 PSO4 PSO5 CO1 3 3 3 3 1 - CO2 3 3 3 3 3 2 - CO3 3 3 3 3 3 - CO4 3 3 3 3 3 3 - CO5 3 3 3 3 3 3 - CO5 3 3 3 3 3 3 - Average 3 3 3 3 3 2.4 - Course Content MDS/4/CC8/T: IoT& Cloud Computing Unit - I Internet of Things: what is the IOT and why is it important, IoT concept framework, IoT architectural view, technology behind IoT, sources of examples of IoT, M2M communication, layered architecture (3 & 5 Layer of IoT, physical design and logical design, domain-specific IoTs, secutions of IoT. Unit - II Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, supplication and logistics, energy conservation.	Average	2	1.4	1.4	2.2	1.8	-	3	2.4	-	2	-	-
CO1 3 3 3 3 2 - CO2 3 3 3 3 3 3 - CO3 3 3 3 3 3 3 - CO4 3 3 3 3 3 3 - CO5 3 3 3 3 3 3 - Average 3 3 3 3 2.4 - Course Content MDS/4/CC8/T: IoT& Cloud Computing Unit - I Internet of Things: what is the IOT and why is it important, IoT concept framework, IoT architectural view, technology behind IoT, sources of examples of IoT, M2M communication, layered architecture (3 & 5 Layer of IoT, physical design and logical design, domain-specific IoTs, secution issues of IoT. Unit - II Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, supplication and logistics, energy conservation.		(CO-PS	O Ma	pping	Matr	ix for (Course	MDS	/4/CC	8/T		
CO2 3 3 3 3 3 3 - CO3 3 3 3 3 3 - CO4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	COs	PS	01]	PSO2		PSC	03		PSO4	-]	PSO5
CO3 3 3 3 3 3 3 3 3 3 5 5 CO4 3 3 3 3 3 3 3 3 3 3 5 5 CO5 3 3 3 3 3 3 3 3 3 3 5 5 CO5 3 3 3 3 3 3 3 5 5 CO5 CONTENT MDS/4/CC8/T: IoT& Cloud Computing Unit - I Internet of Things: what is the IOT and why is it important, IoT concept framework, IoT architectural view, technology behind IoT, sources of examples of IoT, M2M communication, layered architecture (3 & 5 Layer of IoT, physical design and logical design, domain-specific IoTs, secutions of IoT. Unit - II Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, supplication and logistics, energy conservation.	CO1	3	}		3		3			1			-
CO4 3 3 3 3 3 - CO5 3 3 3 3 3 - CO5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	CO2	3	}		3		3			2			-
Course Content MDS/4/CC8/T: IoT& Cloud Computing Unit - I Internet of Things: what is the IOT and why is it important, IoT concept framework, IoT architectural view, technology behind IoT, sources of examples of IoT, M2M communication, layered architecture (3 & 5 Layer of IoT, physical design and logical design, domain-specific IoTs, securissues of IoT. Unit - II Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, surchain and logistics, energy conservation.	CO3	3	}		3		3			3			-
Course Content MDS/4/CC8/T: IoT& Cloud Computing Unit - I Internet of Things: what is the IOT and why is it important, IoT concept framework, IoT architectural view, technology behind IoT, sources of examples of IoT, M2M communication, layered architecture (3 & 5 Layer of IoT, physical design and logical design, domain-specific IoTs, secution issues of IoT. Unit - II Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, surchain and logistics, energy conservation.	CO4	3	}		3		3			3			-
Course Content MDS/4/CC8/T: IoT& Cloud Computing Unit - I Internet of Things: what is the IOT and why is it important, IoT concept framework, IoT architectural view, technology behind IoT, sources of examples of IoT, M2M communication, layered architecture (3 & 5 Layer of IoT, physical design and logical design, domain-specific IoTs, sect issues of IoT. Unit - II Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, sup chain and logistics, energy conservation.	CO5	3	}		3		3			3			-
Unit - I Internet of Things: what is the IOT and why is it important, IoT concept framework, IoT architectural view, technology behind IoT, sources of examples of IoT, M2M communication, layered architecture (3 & 5 Layer of IoT, physical design and logical design, domain-specific IoTs, securissues of IoT. Unit - II Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, supplication and logistics, energy conservation.	Average	3	}		3		3			2.4			-
framework, IoT architectural view, technology behind IoT, sources of examples of IoT, M2M communication, layered architecture (3 & 5 Layer of IoT, physical design and logical design, domain-specific IoTs, securissues of IoT. Unit - II Communication challenges related to IoT, enabling technologies for IoT. Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, sur chain and logistics, energy conservation.				MDS	/4/CC8				omput	ting			
Applications of IoT: home automation, smart cities, social life entertainment, health & fitness, smart environment and agriculture, sugnition and logistics, energy conservation.	framework, IoT architectural view, technology behind IoT, sources of IoT, examples of IoT, M2M communication, layered architecture (3 & 5 Layered) of IoT, physical design and logical design, domain-specific IoTs, security												
Design principles for web connectivity: web communication protocols connected devices, message communication protocols for connected devices. Unit - III Introduction to cloud computing: what is a cloud, definition of connected devices.													

	computing, evolution of cloud computing, characteristics of cloud computing, how cloud computing works, role of networks in cloud computing. Service models: IaaS, PaaS, SaaS, public, private and hybrid cloud.
Unit - IV	Introduction to virtualization, resource virtualization-server, storage, network, load balancing and virtualization. Hypervisors and its types, service oriented architecture (SOA), overview of security issues, challenges and risks of cloud.
	Text/Reference Books
Text Books	 Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing a Practical Approach, Tata McGraw Hill, New Delhi, 2010 Robert Elsenpeter, Toby J. Velte, Anthony T. Velte, Cloud Computing: A Practical Approach, 1e, Tata McGraw Hill Education, 2011. Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, Cloud Computing for Dummies, Wiley Publishing, 2010
Reference Books	 RajkumarBuyya, James Broberg, AndrzejGoscinski, Cloud Computing-Principles and Paradigms, Wiley, 2011. Raj Kamal, Internet of Things-Architectures and Design Principles, McGraw Hill Education, 2017

	MDS/4/DSC4(i)/T: Soft Computing								
Course Type	Course	Contact	Delivery	Maximu	ım Marks	Exam	Assessment		
	Credit	Hours/ Week	Mode	External	Internal	Duration	Methods		
Optional Theory	04	04	Lecture	70	30 20 5 5	3 Hours	TEE/MTE/ Assignment/ Attendance		

Course Objectives: The objective of this course is to cover fundamental soft computing concepts with an exposure to ANN, fuzzy Logic, optimization techniques using Genetic Algorithm (GA).

Course Outcomes	By the end of this course, the student will be able to:
CO1	recognize the concept of: soft computing and hard computing, simple
	algorithm, fuzzy set, neuron, neural network and activation function.
CO2	understand and describe: the role of genetic algorithm open
	representation of fuzzy set and its operation, types of neural netwo
	activation function including their pros and cons.
CO3	use: genetic algorithm, fuzzy logic, ANN and their constituents
	for solving optimization problem.
CO4	differentiate: soft computing and hard computing, operators of
	algorithm and activation functions of ANN.
	Analyze: fuzzification and defuzzification.
CO5	compare: soft computing and hard computing, operators of genetic alg
	and different activation functions of ANN.

CO-PEO Mapping Matrix for Course MDS/4/DSC4(i)/T										
COs	PEO1	PEO2	PEO3	PEO4	PEO5					
CO1	1	3	1	3	3					
CO2	2	3	1	3	3					
CO3	3	3	1	3	3					
CO4	3	3	1	3	3					
CO5	3	3	1	3	3					
Average	2.4	3	1	3	3					

	C O-PO	Mappi	ng N	// atrix	for C	Course	e MDS	S/4/DS	C4(i),	/ T		
COs	PO1		PO3 °	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	- 3		-	-	-	-	-
CO2	2	1	1	3	1	-	3	-	-	-	-	-
CO3	3	1	1	3	3	-	3	-	-	-	-	_
CO4	2	1	1	3	1	-	3	-	-	-	-	-
CO5	2	1	3	1	3	-	3	1	-	-	-	-
Average	2	1.4	1.4	2.2	1.8	-	3	-	-	-	-	-
	CO-PSC	Mapp	ing l	Matri	x for (Cours	e MD	S/4/DS	6C4(i))/T		
COs	P	SO1		PSO2	2	PS	SO3		PSO ₂	4	PSO5	
CO1		3		1			3		1		-	
CO2		3		1			3		2		-	
CO3		3		1			3		3		-	
CO4		3	1			3			3		-	
CO5		3	1		3			3		-		
Average		3	1					2.6		-	-	
		MDS	/4/D			ntent oft C	ompu	ting				
l c	Introduction to Soft Computing: Overview of Soft Computing, difference between soft and hard computing, brief descriptions of different components of soft computing including artificial neural networks, fuzzy logic, genetic algorithms.											
	Genetic Algorithm:Introduction to genetic algorithm, simple genetic algorithm, its representation. Selection: Roulette wheel selection, random, rank, tournament, Boltzmann selection. Crossover and its types: Single point crossover, two point crossover, multipoint crossover, ordered crossover, uniform crossover, crossover for real-valued representation. Mutation and its types: Flipping, Interchanging, reversing, replacement, mutation for real-valued representation, crossover rate, mutation rate and convergence criteria.											
Unit – III	Fuzzy I		ntro	duction		•	_	-			a classi	cal set,

	Fuzzy set operation: Intersection of fuzzy sets, union of fuzzy sets, complement of fuzzy sets, important terminologies in fuzzy set operations, properties of fuzzy sets, fuzzy arithmetic. Fuzzy Composition: Max-Min composition, max-star composition, max-product composition, max-average composition. fuzzification and defuzzification.					
Unit - IV	Artificial Neural Network: Basic of neural network: neuron, artificial neuron, neural network, artificial neural network, perceptron, feed forward, multilayer perceptron neural network, advantage and disadvantage of ANNs. activation function and types of activation function.					
Text/Reference Books						
Text Books	 David E. Goldberg, Genetic Algorithms in Search, Optimization and machine learning. Pearson Education India, 2008. Roy, S. and Chakraborty, U. Soft computing. Pearson Education India, 2013. 					
Reference Books	 Michael D. Vose. The Simple Genetic Algorithm - Foundations and Theory. Prentice Hall India Learning Private Limited,2004. Rajasekaran, Sanguthevar, and GA Vijayalakshmi Pai. Neural networks, fuzzy logic and genetic algorithm: synthesis and applications (with cd). PHI Learning Pvt. Ltd., 2003. Deepa, S.N. and Sivanandam, S.N. Principles of soft computing ,2011. Haykin, S. and Network, N.A comprehensive foundation. Neural networks, 2(2004). 					

MDS/4/DSC4(ii)/T:Deep Learning							
Course Type	Course	Contact	Delivery	Maxim	ım Marks	Exam	Assessment
	Credit	Hours/ Week	Mode	External	Internal	Duratio n	Methods
Optional Theory	04	04	Lecture	70	30	3 Hours	TEE/MTE/ Assignment/
Theory					20 5 5		Attendance

Course	At the end of this course, the student will be able to:
Outcomes	
CO1	define: the terms of machine learning: deep learning, regression, classification, regression, neurons, CNN and RNN.
CO2	explain: architecture of ANN and deep learning, variants of the basic convolution function, Long short-term memory.
CO3	apply: classification, regression, clustering techniques, Feed forward multilayer neural network, CNN, RNN according to their problem.
CO4	Classify: regression, classification, Convolutional Neural networks, RNN
CO5	compare: Single-layer and Multi-layer Perceptron, CNN and RNN

CO-PEO Mapping Matrix for Course MDS/4/DSC4(ii)/T												
COs	P	PEO1			PEO2				PEO ²	1	PEO5	
CO1		1	Ì	3		Ì	1		3			3
CO2		2	İ	3			1			3		3
CO3	3			3			1		3		3	
CO4	3			3			1		3		3	
CO5		3	İ	3			1		3		3	
Average		2.4		3			1		3		3	
CO-PO Mapping Matrix for Course MDS/4/DSC4(ii)/T												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1	1	3	1	1	1	_	3	_	_	-	_	_

												1
CO2	2	1	1	3	1	-	3	-	-	-	-	-
CO3	3	1	1	3	3	_	3	-	-	_	-	-
CO4	2	1	1	3	1	-	3	-	_	_	-	-
CO5	2	1	3	1	3	_	3	-	-	-	-	-
Average	2	1.4	1.	2.2	1.8	-	3	-	-	_	-	-
CO-PSO Mapping Matrix for Course MDS/4/DSC4(ii)/T												
COs	PSO1		PSO2		PSO3			PSO4		PSO5		
CO1		3	1		3			1		-		
CO2		3	1			3			2		-	
CO3		3	1			3			3		-	
CO4	3		1			3			3		-	
CO5		3		1		3			3		-	
Average	3			1		3			2.6		-	
										I		

	Course Content MDS/4/DSC4(ii)/T:Deep Learning								
Unit – I	Introduction: Introduction to Machine learning, Deep learning and AI, Historical trends in Deep learning, Architecture of deep learning, Significance of Deep learning, application of deep learning, challenges of Deep learning.								
	Neural Network : Introduction, architecture, difference between Biological Neuron Network and Artificial Neuron Network.								
Unit – II	Foundation of Deep Learning: Vector, scalars, matrix, statistics, probability.Regression, classification, underfitting, overfitting, gradient descent, logistic regression, confusion matrix. Activation functions of Neural Network (liner, sigmoid, tanh, softmax).								
Unit – III	Fundamental of Deep Learning: common architectural principles of deep learning, Single-layer and Multi-layer Perceptron, Cross-entropy loss functions for Neural net, Matrix representation of Neural nets.								
	Building block of deep network : Feed forward multilayer neural network, RBMs, Autoencoders.								
Unit – IV	Convolutional Neural networks: Deep Learning and Neural Networks Perceptrons, Convolutional networks , variants of the basic convolution function, efficient convolution algorithms.								
	Recurrent Neural networks : Bidirectional RNNs , Deep recurrent networks , recursive neural networks , The Long short-term memory and other gated RNNs.								
	Text/Reference Books								
Text Books	 David Foster, Generative Deep Learning, O'Reilly, 2019. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016. Patterson, Josh, and Adam Gibson. Deep learning: A practitioner's approach. "O'Reilly Media, Inc.", 2017. Charu, C. Aggarwal. Neural networks and deep learning: a textbook. 201 								
Reference Books	 Buduma, Nithin, Nikhil Buduma, and Joe Papa. Fundamentals of deep learning. "O'Reilly Media, Inc.", 2022. Weidman, Seth. Deep learning from scratch: building with python from first principles. O'Reilly Media, 2019. Ian Goodfellow, YoshuaBengio and Aaron Courville. Deep learning, The MIT Press, 2016. 								